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Abstract: Most of the forest biomass models that have been developed so far focus on the study of the
aboveground biomass of forest trees and the prediction of belowground biomass remains obviously
insufficient. Moreover, most of the existing studies on the estimation of the belowground biomass of
trees have considered roots as a whole, ignoring the differences in composition and function of roots
within different diameter classes. In this study, we measured the root biomass of birch plantation
forests in northeastern China using extensive destructive sampling, in which we divided the root
system into three parts: coarse, medium, and fine roots. We selected the best model base form from
three common allometric biomass equations and determined the most appropriate error structure
for the two sets of models using likelihood comparisons. The additive and disaggregated models
were fitted using maximum likelihood with open-source software. We also added the site factor as a
dummy variable into the two models. Finally, the competency of the two models was tested using
ten-fold cross-validation. The results showed that both models could provide relatively accurate
estimates of birch root biomass but that the disaggregated model performed slightly better than the
additive model.

Keywords: Betula platyphylla; root biomass; additive equation; disaggregated model

1. Introduction

The biomass and carbon stocks of forests play a major role in the global carbon
cycle and the assessment of the structure and condition of forests [1]. The estimation
of forest biomass using models facilitates the assessment of the productivity and carbon
sequestration capacity of forests [2]. The monitoring of forest biomass and carbon stocks
and the establishment of biomass models that are suitable for larger areas are therefore
increasingly important. Over recent decades, researchers have developed more than
2600 biomass models for over 100 species of tree around the world [3], most of which
are used to estimate aboveground biomass [4–7]. There are much fewer estimates of the
belowground biomass of plants due to the difficulties of excavation and high consumption
costs. However, the root systems of trees, especially fine roots, play a critical role in
resource absorption for plants [8] and the prediction of the root biomass of forests helps
us to understand the growth and development of trees. Similarly, this contributes to our
assessment of forest biomass distribution structures and forest development conditions
at the stand scale. More importantly, root biomass accounts for about 15–25% of the total
biomass of all types of forests [9] and is an essential part of the estimation of carbon stocks
within forest ecosystems. Therefore, the accurate quantification of belowground carbon
stocks within forest ecosystems is essential for the effective prediction of how future climate
change could affect global carbon dynamics [10]. In addition, most of the existing studies
have only estimated the overall root biomass of trees and have ignored the differences
between roots in different diameter classes [11,12]. It is well known that roots in different
diameter classes differ in their physiological characteristics and functions; for example, fine
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roots are usually the most active and dynamic part of the root system in terms of nutrient
and water uptake and carbon (C) storage and the coarse root component comprises larger
structural roots that provide support and anchorage for the aboveground parts of the
tree [10,13]. Thus, we suggested that it would be a better option to classify the tree root
system by diameter class before attempting estimations.

White birch (Betula platyphylla Suk.) is a pioneer species in the succession of natural
secondary forest ecosystems and is a critical tree species within the forests of northeastern
China [14]. The estimation of the underground root biomass of white birch is important for
understanding its carbon stocks, as well as productivity, but there have been few studies
on the underground biomass of white birch.

The aggregation method that was proposed by Parresol (2001) has now become the
mainstream method for making individual component biomass estimates using additive
equations [15]. This method constructs separate nonlinear models for each component of the
biomass of the stand and later aggregates these components into the total biomass, usually
through weighted nonlinear seemingly uncorrelated regression (SUR). Additive biomass
equation systems have been developed for white birch trees in natural stands [16–18]. Only
the root biomass is estimated as a component in these systems, which is less accurate for
root prognosis when using Wang’s additive model for birch plantation development [18].
Moreover, in contrast to the aggregative method, the disaggregation strategy focuses first
on the specification of the allometric equation for the total biomass and then constrains the
form or parameters of the component equations by fitting the proportion of total biomass
that is observed in each component to ensure additivity [3,19].

For individual stands, diameter at breast height (DBH) is typically used to estimate
their biomass, either alone or in combination with other stand characteristics. DBH is easy
to measure and usually accounts for the largest share of variation in tree biomass [20–24],
but attributes such as tree height or tree age can account for additional variation that
is associated with differences in height, including diameter ratios, stand density, and
other factors [25,26]. Whether adding the tree height into the equation could improve the
accuracy of the model for the estimation of the root biomass of birch trees has not been
well documented.

In this study, we constructed additive and disaggregated models with the aim of
developing a predictive model that would be suitable for the estimation of the belowground
root biomass of birch and could provide a reference for C reserves within forest root systems.
Both models were additive, which had the advantage of taking into account the inherent
correlation of roots in different stem classes. The two model systems used a multiplicative
error structure, overcame the heterogeneity problem through log-transformation, and fitted
the models using Gaussian maximum likelihood. Finally, a comparison of the performance
differences between the two models was carried out and provided a more accurate method
for the estimation of the belowground root biomass of birch plantations.

2. Materials and Methods
2.1. Study Area Description

The study area spans three provinces in northeastern China: Heilongjiang, Jilin,
and Liaoning. Detailed information about the climatic and location characteristics of the
three sites are described in Table 1. We considered a total of five planted forests in those
three provinces in northeastern China, with a total of 493 sample trees. Three of the five
experimental plantations are in Heilongjiang Province, all of which are located in the Maoer
mountains, Heilongjiang province. The first is a 13-year-old plantation, the second is 9 years
old and the third plantation is 7 years old. The density of the above three plantations is
2 m × 2 m. The fourth is a 10-year-old plantation with a planting density of 2 m × 2 m in
Jilin Province. The fifth is a 13-year-old plantation in Liaoning Province with a planting
density of 1.5 m × 0.75 m.
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Table 1. Geographic coordinates, temperature, and precipitation at the sites.

Site Latitude (◦) Longitude (◦) MAT (◦C) T max (◦C) T min (◦C) MAP (mm) Samples

Heilongjiang 45.42 127.63 2.56 25.88 −25.88 596.00 333
Jinlin 43.66 126.66 3.05 24.49 −26.44 707.00 26

Liaoning 40.85 123.92 6.64 26.26 −17.52 904.00 134

2.2. Measurement of Belowground Root Biomass

We destructively sampled birch stands in the five plantations in August 2011. When
excavating the root systems of the birch trees, we first used hoists to pull the trunk tight
and then used a shovel to carefully expose the main root at the base of the trunk and dug
carefully to maintain the integrity of the root system as much as possible. The soil was
then washed off the roots using water and the roots were divided into three diameter
classes, which are commonly found in the literature, using sieves of 2 mm and 5 mm [27,28]:
the coarse class (>5 mm in diameter), medium class (5–2 mm), and fine roots (<2 mm)
(Supplementary Material). The biomass of each part of the root system was calculated
using the method of Zhu et al. (2013) [29]. Then, 500 g of coarse and medium roots and
about 100 g of fine roots was randomly sampled to measure the exact fresh weights. All
samples were dried at 70 ◦C until the mass was constant and then, the ratio of dry to
fresh weight was calculated. Finally, the weight of the dry biomass of each part of the root
system was obtained using the fresh weight multiplied by the corresponding dry weight
to fresh weight ratio. Table 2 shows the data of the specific root biomass measurements.
The relationship between the total root biomass of white birch and its components per tree
and tree variables (DBH and HT) is shown in Figure 1, which demonstrates the obvious
nonlinear relationships.
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Table 2. Summary statistics of diameter at breast height (DBH), tree height (HT), and root biomass
for the sampled trees (n = 493).

Parameter DBH
(cm)

HT
(m)

Coarse Root
(kg)

Medium Root
(kg)

Fine Root
(kg)

Total Biomass
(kg)

Mean 7.98 9.41 2.65 1.48 1.20 5.34
SD 1.71 1.97 1.79 0.96 0.75 3.23

Max 11.90 14.00 9.29 10.19 3.98 20.27
Min 3.40 4.50 0.10 0.02 0.02 0.14

2.3. Selection of Allometric Equations and Error Structures

DBH is an important predictor in the biomass estimation model because it is easier to
measure than other tree characteristics and has a satisfactory applicability for many tree
species in many regions. In many cases, adding HT as a secondary predictor can improve
the accuracy of the model predictions [12,30]. The following three formulae were common
allometric equations in the literature:

Y = a · Db (1)

Y = a · (D2H)
b

(2)

Y = a · DbHc (3)

In this study, the above three allometric biomass equations were fitted to the biomass
of the components (coarse, medium, and fine roots) and the total root biomass.

There are two error structures (multiplicative and additive): the former is a linear
regression (LR) on log-transformed data and the latter is a nonlinear regression (NLR) on
untransformed data. In order to select the most appropriate error structure of the two for
Equations (1)–(3), we applied the method that was recommended by Xiao et al. (2011) [31]
to compute the Akaike information criterion (AICc) for each component model and the
total root biomass model. Then, we compared the ∆AICc (∆AICc = AICcNLR − AICcLR)
to determine which error structure was more appropriate. When the ∆AICc > +2, it implied
that the assumption of the multiplicative log-normal error structure was favored over
the additive normal error structure. These results suggested that this dataset was more
suitable for LR. Conversely, when the ∆AICc < −2, the more appropriate model was NLR
on the untransformed data. When −2 < ∆AICc < +2, neither model error structure was
favored and then, the model averaging could be adopted. Considering the differences in
the environment as well as the age and density of the plantation forests at the three sites,
we decided to use the sites as dummy variables in Equations (1)–(3). Two dummy variables,
S2 and S3, were constructed to reflect the sites, i.e., Liaoning when S2 = 1 and S3 = 0, Jilin
when S2 = 0 and S3 = 1, and Heilongjiang when S2 = 0 and S3 = 0.

Further, we evaluated the simple model using ten-fold cross-validation after determin-
ing the most suitable error structure.

2.4. Additive and Disaggregated Models of Biomass Equations

The gnls package of the open-source software R (4.0.4) was used to construct the
additive and disaggregated models for the estimation of the root biomass of white birch,
following the method of Affleck et al. (2016) [32]. The equations for coarse, medium, and
fine root biomass were constructed separately and the total root biomass was calculated as
the sum of each component biomass, as follows Equations (4)–(7):

Coarse:
Y1 = f1(X1, β1) + ε1 (4)

Medium:
Y2 = f2(X2, β2) + ε2 (5)

Fine:
Y3 = f3(X3, β3) + ε3 (6)
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Total:

Y4 = Yt =
M

∑
m=1

Ym = f1(X1, B1) + f2(X2, β2) + f3(X3, β3) + ε4 (7)

where Y1 to Y3 denote the vectors of the coarse, medium, and fine root biomass of birch,
respectively, Y4 is the total root biomass, fm(Xm, βm) is a nonlinear function of the mth
component biomass, εi is the n × 1 residual vector, and n is the number of observations
(trees). The disaggregated model was the contrast to the additive model. It required first
the development of an estimation model for the overall root biomass, Equation (8):

Yt = ft(Xt, βt) (8)

Then, by treating the medium and fine roots as an overall F(YF = Y2 + Y3) func-
tion, fcF(XcF, βcF) was the fraction that was used to distinguish the coarse and fine roots,
Equation (9):

fcF(XcF, βcF) =
fc(Xc, βc)

fc(Xc, βc) + fF(XF, βF)
(9)

It was decomposed using a multiplicative component judgment function. The com-
ponent biomass expectation then became a complex nonlinear function of the available
predictors, while the total amount was simplified. The additivity and homogeneity of the
components were taken into account. An effective Gaussian biomass model that was based
on this decomposed set of equations could be written in additive error form, as follows
Equations (10)–(12):

Yc = fcF(XcF, βcF) ft(Xt, βt) + εc (10)

Ym = fm f (Xm f , βm f )[1− fcF(XcF, βcF)] ft(Xt, βt) + εm (11)

Yf = [1− fm f (Xm f , βm f )][1− fcF(XcF, βcF)] ft(Xt, βt) + ε f (12)

where fm f

(
Xm f , βm f

)
is a fractional function of similar form to fcF(XcF, βcF), εi is the

n × 1 residual vector, and n is the number of observations (trees).

2.5. Model Assessment and Evaluation

The strength of a model fit does not fully reflect the actual predictive ability of the
model, so model validation was necessary to assess and evaluate the predictive ability of
the different biomass equations. Therefore, we used the ten-fold cross-validation method
to validate the model performances. The total data were randomly divided into 10 parts:
9 of them were used as training data and 1 was used as test data to test the model per-
formances [33]. Four fit statistics were obtained for each equation to evaluate the fitting
capability of the biomass prediction system: mean residual (E), mean of the absolute value
of residuals (MABE), root mean square error (RMSE), and the coefficient of determination
(R2). The relative error between the predicted and true values of the model was represented
by E divided by the mean of the true data. The standard mathematical expressions of E,
MABE, RMSE, and R2 are as follows, Equations (13)–(16):

Ei =

n
∑

j=1
(Yij − Ŷij)

n
(13)

MABEi =

n
∑

j=1
|Yij − Ŷij|

n
(14)

RMSEi =

√√√√√ n
∑

j=1
(Yij − Ŷij)

2

n
(15)
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R2
i = 1−

n
∑

i=1
(Yij − Ŷij)

2

n
∑

i=1
(Yij −Yij)

2
(16)

In addition, due to the simplified variance functions of Affleck et al. (2016) that we
used [32], the raw residuals were no longer suitable for the residual diagnostics. The
normalized residuals were a better diagnostic method, Equation (17):

ri = V̂−
1
2

i ei (17)

where ei = (e1i, e2i, . . . , eni)T is the vector of raw residuals for the nth tree, V̂i is the corre-
sponding estimated variance–covariance matrix, and V̂i

−1/2 is a Choleski factorization of
that matrix.

3. Results
3.1. Selection of Biomass Models

We compared the appropriateness of the error structures for the three allometric
biomass equations (i.e., Y = a · Db, Y = a ·

(
D2H

)b, Y = a · DbHc) using the likelihood
analysis. The information statistics (∆AICc) of the likelihood analysis are presented in
Table 3. The results indicated that ∆AICc > 2 for the three allometric biomass equations
for each component biomass and the total root biomass dataset. This means that the multi-
plicative log-normal error structure was more appropriate for our dataset. Thus, we used
LR on the log-transformed data and added the dummy variables into Equations (1)–(3), as
follows Equations (18)–(20):

Y = exp[a + b · ln(D) + c · S2 + d · S3] (18)

Y = exp[a + b · ln(D2H) + c · S2 + d · S3]t (19)

Y = exp[a + b · ln(D) + c · ln(H) + d · S2 + e · S3] (20)

where S represents the site of the dummy variable: Liaoning when S2 = 1 and S3 = 0, Jilin
when S2 = 0 and S3 = 1, and Heilongjiang when S2 = 0 and S3 = 0.

Table 3. Information statistics (∆AICc = AICcnorm − AICclogn) of the likelihood analysis.

Equation Coarse Root Medium Root Fine Root Total Biomass

Y = a · Db 187.29 50.42 8.53 140.43

Y = a ·
(

D2H
)b 163.58 41.98 8.68 115.03

Y = a · Db Hc 195.21 45.54 9.45 142.31

In the results of the ten-fold cross-validation (Table 4), it could be seen that Equation (3)
had a relatively larger R2 and smaller E and MABE compared to Equations (1) and (2).
Therefore, we ultimately chose Equation (3) as the basic form of the model and used the
multiplicative log-normal error structure to establish the additive and disaggregated models.

3.2. Additive Biomass Equations

Based on the multiplicative error structure of Equations (4)–(6), the results of fitting the
additive system equations after logarithmic transformation are shown below Equations (21)–(23):

fc(D, H; βt) = exp(βc1 + βc2 ln DBH + βc3 ln HT + βcs2S2 + βcs3S3 + εc) (21)

fm(D, H; βt) = exp(βm1 + βm2 ln DBH + βm3 ln HT + βms2S2 + βms3S3 + εm) (22)

f f (D, H; Bt) = exp(β f 1 + β f 2 ln DBH + β f 3 ln HT + β f s2S2 + β f s3S3 + ε f ) (23)
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Table 4. R2, E, MABE, and RMSE for the three biomass models.

Model Biomass Component R2 E MABE RMSE

Y = a · Db Coarse 0.3728 0.3150 1.1087 1.4819
Medium 0.4975 0.1047 0.5382 0.7120

Fine 0.3695 0.1922 0.4714 0.6225
Total 0.4627 0.4605 1.8767 2.4789

Y = a ·
(

D2 H
)b Coarse 0.3181 0.3411 1.1646 1.5445

Medium 0.4203 0.1082 0.5823 0.7645
Fine 0.3065 0.1901 0.4974 0.6547
Total 0.3850 0.4918 2.0232 2.6515

Y = a · Db Hc Coarse 0.4907 0.2626 0.9805 1.3336
Medium 0.5615 0.1222 0.4849 0.6639

Fine 0.4825 0.1253 0.4248 0.5656
Total 0.5509 0.3627 1.6711 2.6416

The coefficients of DBH and HT powers were significant (p < 0.05) in each biomass
equation (Table 5). Interestingly, the coefficients of the DBH of white birch were positive in
all three root component equations for coarse, medium, and fine roots, while the those of
the HT were all negative. Positive coefficients for DBH and HT indicated that they were
positively correlated with the biomass of each component of the root system. This meant
that DBH was positively correlated with the biomass of each root fraction. In other words,
the root biomass of birch increased with increasing DBH for the same tree height, while a
negative coefficient of HT indicated that the root biomass decreased with increasing HT for
the same DBH.

Table 5. Parameter estimates and their asymptotic standard errors and p values for the additive root
biomass equation system.

Biomass
Component Parameter Asymptotic

Estimate
Asymptotic

Standard Error p Value

Coarse βc1 −0.9679 0.2008 0.0000
βc2 2.2547 0.1435 0.0000
βc3 −1.1789 0.1369 0.0000
βcs2 0.2733 0.0932 0.0034
βcs3 −0.8561 0.0943 0.0000

Medium βm1 −2.7028 0.1985 0.0000
βm2 2.2534 0.1356 0.0000
βm3 −0.6586 0.1282 0.0000
βms2 −0.3815 0.1287 0.0031
βms3 −0.7157 0.0746 0.0000

Fine βc1 −3.7903 0.2251 0.0000
βc2 2.313 0.1463 0.0000
βc3 −0.361 0.1446 0.0126
βcs2 −0.3346 0.1323 0.0116
βcs3 −0.2382 0.0572 0.0000

3.3. Disaggregated Model Equations

Against the additive model, a disaggregated model of Equations (10)–(12) was then
specified. This model was based on an equation for the expected total root biomass, a
function to discriminate between coarse root and fine root mass (<5 mm in diameter), and
a function to discriminate between medium root and fine root mass. The forms that were
adopted for these Equations (24)–(26) were:

ft(D, H; βt) = exp[Bt1 + βt2 ln DBH + βt3 ln HT + βts2S2 + βts3S3] (24)

fcF(D, H; βcF) =
1

1 + exp[βcF1 + βcF2 ln DBH + βcF3 ln HT + βcFs2S2 + βcFs3S3]
(25)

fm(D, H; βm f ) =
1

1 + exp[βm f 1 + βm f 2 ln DBH + βm f 3 ln HT + βm f s2S2 + βm f s3S3]
(26)
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The substitution of these equations into Equations (10)–(12) provided the overall
model structure. The parameters of each biomass equation are shown in Table 6. We found
that four parameters of the disaggregated model were insignificant so we tried to modify
the model, but the results of the analysis of variance (ANOVA) showed that the deletion
of the parameters that were not significant had little effect on the total model (p > 0.05).
Considering that the overall p value of the model was highly significant (p < 0.001), we
decided to still use the original model for the evaluation in order to avoid the deletion of
parameters, which could lead to missing interactions between variables.

Table 6. Parameter estimates and their asymptotic standard error and p values for the disaggregated
root biomass equation system.

Equation Parameter Asymptotic
Estimate

Asymptotic
Standard Error p Value

ft βt1 −1.0113 0.1807 0.0000
βt2 2.2706 0.1251 0.0000
βt3 −0.8676 0.12 0.0000
βts2 −0.0108 0.0946 0.9088
βts3 −0.6541 0.0682 0.0000

fcF βcF1 1.5647 0.1545 0.0000
βcF2 −0.0272 0.1063 0.7983
βcF3 −0.6669 0.1021 0.0000
βcFs2 0.6444 0.085 0.0000
βcFs2 −0.3682 0.0663 0.0000

fm f βm f 1 1.1035 0.1793 0.0000
βm f 2 −0.0653 0.1182 0.5810
βm f 3 −0.2995 0.1142 0.0088
βm f s2 −0.045 0.1053 0.6693
βm f s3 −0.4775 0.0564 0.0000

3.4. Biomass Model Validation and Comparison

In this study, R2, E, MABE, and RMSE were used as metrics to assess the predictive
power of the two model systems and detailed information on these results can be found in
Table 7. We observed that the disaggregated model had a relatively larger R2 and smaller E,
MABE, and RMSE by comparing these statistics. The ten-fold cross-validation indicated
that the additive model slightly underestimated the coarse root (1.75%), medium root
(1.04%), fine root (0.90%), and total root (1.36%) biomass and that the disaggregated model
also underestimated the coarse root (1.46%), medium root (0.83%), fine root (0.80%), and
total root (1.13%) biomass. Figure 2 shows the Gaussian probability plots of the normalized
residuals from the additive and disaggregated models. The distributions of the residuals
from the total and component root biomass models had light left tails, except for the coarse
root biomass in the disaggregated model. However, the normalized residual plots exhibited
no pronounced outliers or deviations from the Gaussian densities. Figure 3 demonstrates
the accurate prediction of root biomass using the additive and disaggregated models.

Table 7. Ten-fold cross-validation results for each root biomass component in the biomass equa-
tion systems.

Model Biomass Component R2 E MAER RMSE

Additive Coarse 0.4970 −0.0463 0.9953 1.3281
Medium 0.5706 −0.0155 0.4883 0.6596

Fine 0.5044 −0.0109 0.4209 0.5547
Total 0.5480 −0.0725 1.7155 2.2782

Disaggregated Coarse 0.5043 −0.0387 0.9865 1.3178
Medium 0.5762 −0.0123 0.4846 0.6551

Fine 0.5062 −0.0096 0.4211 0.5537
Total 0.5548 −0.0605 1.6990 2.2601
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4. Discussion

DBH is widely used in aboveground biomass models for various types of forests
and the addition of HT as a predictor variable can improve the predictive performance
of the models [34,35]. In order to investigate whether the root systems of trees are also
consistent with this phenomenon, we used three common anisotropic growth equations
to construct two model systems. Our results suggested that Equation (1) predicted better
for fine root biomass, while the estimates for coarse and medium root biomass were
deficient. Equation (3) significantly improved the prediction of medium and coarse root
biomass after the addition of HT. It is worth noting that although Equation (2) used two
predictors (D, H), it did not show satisfactory prediction outcomes and was even worse
than Equation (1). This contradicted our previous studies on aboveground biomass models
of trees [21,36]. Therefore, the means of estimating the aboveground biomass of trees was
not fully applicable with root biomass and we do not recommend the use of the D2H form
to predict the root biomass of birch plantations.

Linear and nonlinear regressions with multiplicative and additive error structures are
widely used for modeling tree biomass when using power functions as the basic form of the
biomass models [37,38]. However, most researchers have tended to use log-transformed
or nonlinear forms directly, without any further analysis to determine which is more
appropriate for each particular dataset before use, which is not rigorous. We applied the
likelihood comparisons that were proposed by Xiao et al. (2011) for the preliminary analysis
of our root biomass dataset before modeling and thus, selected the most appropriate
model error structure to decide whether the model fit should take a linear or nonlinear
form. The results showed that the dataset of the three components of birch root biomass
(coarse, medium, and fine roots) tended to have a multiplicative error structure, which
demonstrated that log-transformed linear regression fitted our root biomass model better
than the nonlinear models. Although additive models for the estimation of root biomass
have rarely been developed, our results supported that the birch root biomass dataset was
better adapted to log-transformed linear regression, as is the case for most datasets for the
anisotropic growth of trees [39–42].

Most of the developed biomass models predict the aboveground biomass of forest
trees and only a limited number estimate the belowground biomass. Considering the
differences in physiological characteristics and functions of roots in different diameter
classes, we divided the root system into three parts according to diameter class instead
of constructing a model of the root system as a whole, as in other research [18,43,44]. A
comparison of the R2, E, RMSE, and MABE of the two models revealed that they performed
similarly and that both could provide effective assessments of the root biomass of birch
plantation forests in northeastern China (Table 7 and Figures 2 and 3). The disaggregated
model provided more accurate estimates of the biomasses of the individual components
and the total roots (Table 7). However, the predictive accuracy of our model appeared to be
weak in comparison. For example, the R2 of the model that was constructed by Usoltsev
et al. for the prediction of birch root biomass was 0.819 [45] and the R2 of the coarse root
biomass model that was developed by Bijak et al. was as high as 0.94 [46]. This is due
in large part to the variety of family lines within our studied birch plantations and we
sampled completely randomly, rather than restricting samples to a certain DBH. All of
these measures were intended to provide the model with a wider range of applications. In
fact, we found that the prediction accuracy of our model was high, according to the results
in Section 3.4.

In addition, the mean errors of the predictions for each component of the model
in both groups was total root > coarse root > medium root > fine root (Table 7), which
was related to the proportion of the biomass of each component. Among the 493 birch
plants that were selected for this study, the average proportions of coarse, medium, and
fine roots within the total roots were 49%, 28%, and 24%, respectively, (Table 2) and it
can be seen that the average error of the model prediction increased with the increasing
proportion of each component within the total. This phenomenon could be explained by
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errors in the destructive sampling of the underground roots. The distribution of tree roots
in the soil is intertwined and complex and the sampling of forest roots is often challenging
for researchers [47]. Even though we took enough care in digging up the plant roots,
we still lost some roots due to the limitations of the sampling method. This could have
caused our model to underestimate root biomass, which resulted in the calculation of root
to shoot ratios in which our estimates were lower than the true values. Although the
destructive sampling of the root systems introduced some errors into our estimations, a
small number of samples has often been chosen to establish biomass equations with smaller
sampling costs and time requirements. This adversely affects the estimation accuracy as
well as the applicability of the model [48]. In contrast, our extensive sampling of the birch
plantations at three sites in northeastern China spanned 3.71◦ longitude and 4.57◦ latitude
with an annual mean temperature difference of 3.34 ◦C. A total of 493 birch trees from
five plantations of various ages and genotypes were used as samples to construct our root
biomass models. This enabled our models to have a higher prediction accuracy and a wider
range of suitability.

Fine roots are the most active part of the root system of a plant and soil nutrients, struc-
ture, and environmental conditions often have a dramatic effect on fine root biomass [49–51].
In fact, there are other characteristics beyond DBH and HT that may have a favorable im-
pact on the prediction of tree root biomass. Albaugh et al. showed that fine root mass is
greatly correlated with leaf area and they demonstrated a decrease in the fine root biomass
allocation of Loblolly Pines under fertilization and irrigation treatments [52]. A study by
Zhang et al. (2011) concluded that stand density is an important factor that can affect the
root biomass of Pinus massoniana [53]. Stand age is also an important influence on the fine
root biomass of birch trees [54], but the age span of the stands was not large enough to
be used as an effective predictor in our study. In addition, fine root turnover is rapid and
biomass varies over a wide range during the different seasons [55]. This could have led
to an underestimation of fine root biomass due to the sampling method. However, our
experimental sites are located in northeastern China, which experiences long winters and a
growing season that usually runs from May to October. The results of a study by Wang
et al. on five forest types in northeastern China indicated that fine root biomass increases
gradually from March to October [56], so we considered sampling in the middle of the
growing season to be representative. In conclusion, establishing more effective models for
the prediction of root biomass requires us to link more factors, such as stand age, climate,
and soil conditions. The prediction of fine root biomass is still challenging (there were
limitations in the modeling of the fine root biomass that we measured at a fixed time) and
the prediction of fine root dynamics is more meaningful.

5. Conclusions

We developed two models for the estimation of the root biomass of birch plantations
in northeastern China: the additive and disaggregated models. Between the two models,
the results of the likelihood comparisons indicated that the multiplicative error structure
was the most appropriate error structure. By comparing the R2, E, MABE, and RMSE of the
three allometric equations, it was found that a ·Db Hc was the most suitable equation for the
estimation of the root biomass of birch trees. Both systems took into account the inherent
correlation between component biomass and additivity. we also added the site into the
additive and disaggregated models as a dummy variable. In conclusion, both models were
effective in predicting the root biomass of birch plantations, with the disaggregated model
performing relatively well. In addition, the inclusion of factors such as stand density and
nurturing intervals, which would have an influence on the allocation of plant root biomass,
in subsequent studies of root biomass may further strengthen the predictive capability of
these models.
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